Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543025

ABSTRACT

Makaluvamine J, a pyrroloiminoquinone alkaloid of marine sponge origin, and its analogs were synthesized and assessed for their potential to develop as a novel and selective growth inhibitor targeting human pancreatic cancer PANC-1 cells. Ts-damirone B, a common precursor featuring a pyrroloiminoquinone core structure, was synthesized through Bartoli indole synthesis and IBX-mediated oxidation. Late-stage diversification at N-5 and N-9 yielded makaluvamine J and several analogs. A structure-activity relationship (SAR) analysis highlighted the significance of the lipophilic side chain at N-9 for the growth inhibitory activity of PANC-1 cells. The modest alkyl group at N-5 was found to improve selectivity against other cancer cells. Among the prepared analogs, the tryptamine analog 24 showed potent and selective cytotoxicity (IC50 = 0.029 µM, selective index = 13.1), exceeding those of natural products.


Subject(s)
Alkaloids , Antineoplastic Agents , Porifera , Pyrroloiminoquinones , Animals , Humans , Pyrroloiminoquinones/chemistry , Pyrroloiminoquinones/pharmacology , Structure-Activity Relationship , Porifera/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Alkaloids/chemistry
2.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557854

ABSTRACT

Pyrroloiminoquinones are a group of cytotoxic alkaloids most commonly isolated from marine sponges. Structurally, they are based on a tricyclic pyrrolo[4,3,2-de]quinoline core and encompass marine natural products such as makaluvamines, tsitsikammamines and discorhabdins. These diverse compounds are known to exhibit a broad spectrum of biological activities including anticancer, antiplasmodial, antimicrobial, antifungal and antiviral activities as well as the inhibition of several key cellular enzymes. The resurgence of interest in pyrroloiminoquinones and the convoluted understanding regarding their biological activities have prompted this review. Herein, we provided a concise summary of key findings and recent developments pertaining to their structural diversity, distribution, biogenesis, and their potential as chemical probes for drug development, including a discussion of promising synthetic analogs.


Subject(s)
Alkaloids , Antineoplastic Agents , Biological Products , Porifera , Pyrroloiminoquinones , Animals , Pyrroloiminoquinones/chemistry , Pyrroloiminoquinones/pharmacology , Porifera/chemistry , Antineoplastic Agents/chemistry , Alkaloids/chemistry , Drug Discovery
3.
Mar Drugs ; 17(1)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654589

ABSTRACT

The temperate marine sponge, Tsitsikamma favus, produces pyrroloiminoquinone alkaloids with potential as anticancer drug leads. We profiled the secondary metabolite reservoir of T. favus sponges using HR-ESI-LC-MS/MS-based molecular networking analysis followed by preparative purification efforts to map the diversity of new and known pyrroloiminoquinones and related compounds in extracts of seven specimens. Molecular taxonomic identification confirmed all sponges as T. favus and five specimens (chemotype I) were found to produce mainly discorhabdins and tsitsikammamines. Remarkably, however, two specimens (chemotype II) exhibited distinct morphological and chemical characteristics: the absence of discorhabdins, only trace levels of tsitsikammamines and, instead, an abundance of unbranched and halogenated makaluvamines. Targeted chromatographic isolation provided the new makaluvamine Q, the known makaluvamines A and I, tsitsikammamine B, 14-bromo-7,8-dehydro-3-dihydro-discorhabdin C, and the related pyrrolo-ortho-quinones makaluvamine O and makaluvone. Purified compounds displayed different activity profiles in assays for topoisomerase I inhibition, DNA intercalation and antimetabolic activity against human cell lines. This is the first report of makaluvamines from a Tsitsikamma sponge species, and the first description of distinct chemotypes within a species of the Latrunculiidae family. This study sheds new light on the putative pyrroloiminoquinone biosynthetic pathway of latrunculid sponges.


Subject(s)
Porifera/metabolism , Pyrroloiminoquinones/chemistry , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/isolation & purification , Antimetabolites, Antineoplastic/pharmacology , Biosynthetic Pathways , Cell Survival/drug effects , Chromatography, High Pressure Liquid/methods , DNA/chemistry , DNA/drug effects , DNA Topoisomerases, Type I/metabolism , Enzyme Assays , HEK293 Cells , HeLa Cells , Humans , Intercalating Agents/chemistry , Intercalating Agents/isolation & purification , Intercalating Agents/pharmacology , Molecular Structure , Pyrroloiminoquinones/isolation & purification , Pyrroloiminoquinones/metabolism , Pyrroloiminoquinones/pharmacology , Tandem Mass Spectrometry/methods , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/isolation & purification , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology
4.
Mar Drugs ; 16(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597332

ABSTRACT

Diverse ligands of the muscle nicotinic acetylcholine receptor (nAChR) are used as muscle relaxants during surgery. Although a plethora of such molecules exists in the market, there is still a need for new drugs with rapid on/off-set, increased selectivity, and so forth. We found that pyrroloiminoquinone alkaloid Makaluvamine G (MG) inhibits several subtypes of nicotinic receptors and ionotropic γ-aminobutiric acid receptors, showing a higher affinity and moderate selectivity toward muscle nAChR. The action of MG on the latter was studied by a combination of electrophysiology, radioligand assay, fluorescent microscopy, and computer modeling. MG reveals a combination of competitive and un-competitive inhibition and caused an increase in the apparent desensitization rate of the murine muscle nAChR. Modeling ion channel kinetics provided evidence for MG binding in both orthosteric and allosteric sites. We also demonstrated that theα1 (G153S) mutant of the receptor, associated with the myasthenic syndrome, is more prone to inhibition by MG. Thus, MG appears to be a perspective hit molecule for the design of allosteric drugs targeting muscle nAChR, especially for treating slow-channel congenital myasthenic syndromes.


Subject(s)
Alkaloids/pharmacology , Muscle, Skeletal/metabolism , Pyrroles/pharmacology , Pyrroloiminoquinones/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Alkaloids/chemistry , Allosteric Site , Animals , Models, Molecular , Molecular Structure , Porifera , Protein Binding , Protein Conformation , Protein Subunits , Pyrroles/chemistry , Pyrroloiminoquinones/chemistry , Torpedo/physiology
5.
Mar Drugs ; 15(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28353633

ABSTRACT

This study began with the goal of identifying constituents from Zyzzya fuliginosa extracts that showed selectivity in our primary cytotoxicity screen against the PANC-1 tumor cell line. During the course of this project, which focused on six Z. fuliginosa samples collected from various regions of the Indo-Pacific, known compounds were obtained consisting of nine makaluvamine and three damirone analogues. Four new acetylated derivatives were also prepared. High-accuracy electrospray ionization mass spectrometry (HAESI-MS) m/z ions produced through MS² runs were obtained and interpreted to provide a rapid way for dereplicating isomers containing a pyrrolo[4,3,2-de]quinoline core. In vitro human pancreas/duct epithelioid carcinoma (PANC-1) cell line IC50 data was obtained for 16 compounds and two therapeutic standards. These results along with data gleaned from the literature provided useful structure activity relationship conclusions. Three structural motifs proved to be important in maximizing potency against PANC-1: (i) conjugation within the core of the ABC-ring; (ii) the presence of a positive charge in the C-ring; and (iii) inclusion of a 4-ethyl phenol or 4-ethyl phenol acetate substituent off the B-ring. Two compounds, makaluvamine J (9) and 15-O-acetyl makaluvamine J (15), contained all three of these frameworks and exhibited the best potency with IC50 values of 54 nM and 81 nM, respectively. These two most potent analogs were then tested against the OVCAR-5 cell line and the presence of the acetyl group increased the potency 14-fold from that of 9 whose IC50 = 120 nM vs. that of 15 having IC50 = 8.6 nM.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Pyrroloiminoquinones/chemistry , Pyrroloiminoquinones/pharmacology , Animals , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy/methods , Porifera/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship
6.
J Nat Prod ; 79(5): 1267-75, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27140429

ABSTRACT

Inhibition of the hypoxia-inducible factor 1α (HIF-1α) pathway by disrupting its association with the transcriptional coactivator p300 inhibits angiogenesis and tumor development. Development of HIF-1α/p300 inhibitors has been hampered by preclinical toxicity; therefore, we aimed to identify novel HIF-1α/p300 inhibitors. Using a cell-free assay designed to test compounds that block HIF-1α/p300 binding, 170 298 crude natural product extracts and prefractionated samples were screened, identifying 25 active extracts. One of these extracts, originating from the marine sponge Latrunculia sp., afforded six pyrroloiminoquinone alkaloids that were identified as positive hits (IC50 values: 1-35 µM). Luciferase assays confirmed inhibition of HIF-1α transcriptional activity by discorhabdin B (1) and its dimer (2), 3-dihydrodiscorhabdin C (3), makaluvamine F (5), discorhabdin H (8), discorhabdin L (9), and discorhabdin W (11) in HCT 116 colon cancer cells (0.1-10 µM, p < 0.05). Except for 11, all of these compounds also reduced HIF-1α transcriptional activity in LNCaP prostate cancer cells (0.1-10 µM, p < 0.05). These effects occurred at noncytotoxic concentrations (<50% cell death) under hypoxic conditions. At the downstream HIF-1α target level, compound 8 (0.5 µM) significantly decreased VEGF secretion in LNCaP cells (p < 0.05). In COLO 205 colon cancer cells no activity was shown in the luciferase or cytotoxicity assays. Pyrroloiminoquinone alkaloids are a novel class of HIF-1α inhibitors, which interrupt the protein-protein interaction between HIF-1α and p300 and consequently reduce HIF-related transcription.


Subject(s)
Alkaloids/pharmacology , E1A-Associated p300 Protein/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Porifera/chemistry , Pyrroloiminoquinones/pharmacology , Alkaloids/chemistry , Animals , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Heterocyclic Compounds, 4 or More Rings , Humans , Male , Marine Biology , Molecular Structure , Neovascularization, Pathologic , Prostatic Neoplasms/drug therapy , Pyrroloiminoquinones/chemistry , Quinones , Spiro Compounds , Thiazepines , Vascular Endothelial Growth Factor A/metabolism
7.
J Phys Chem A ; 119(21): 5368-76, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25584854

ABSTRACT

The first-order hyperpolarizability, ß, has been calculated for a group of marine natural products, the makaluvamines. These compounds possess a common cationic pyrroloiminoquinone structure that is substituted to varying degrees. Calculations at the MP2 level indicate that makaluvamines possessing phenolic side chains conjugated with the pyrroloiminoquinone moiety display large ß values, while breaking this conjugation leads to a dramatic decrease in the calculated hyperpolarizability. This is consistent with a charge-transfer donor-π-acceptor (D-π-A) structure type, characteristic of nonlinear optical chromophores. Dynamic hyperpolarizabilities calculated using resonance-convergent time-dependent density functional theory coupled to polarizable continuum model (PCM) solvation suggest that significant resonance enhancement effects can be expected for incident radiation with wavelengths around 800 nm. The results of the current work suggest that the pyrroloiminoquinone moiety represents a potentially useful new chromophore subunit, in particular for the development of molecular probes for biological imaging. The introduction of solvent-solute interactions in the theory is conventionally made in a density matrix formalism, and the present work will provide detailed account of the approximations that need to be introduced in wave function theory and our program implementation. The program implementation as such is achieved by a mere combination of existing modules from previous developments, and it is here only briefly reviewed.


Subject(s)
Biological Products/chemistry , Models, Chemical , Porifera/chemistry , Pyrroles/chemistry , Pyrroloiminoquinones/chemistry , Animals , Computer Simulation , Molecular Structure , Nonlinear Dynamics , Oceans and Seas , Photochemical Processes , Solvents/chemistry
8.
Org Lett ; 15(7): 1516-9, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23472820

ABSTRACT

A new pyrroloiminoquinone alkaloid, named atkamine, with an unusual scaffold was discovered from a cold, deep water Alaskan sponge Latrunculia sp. collected from the Aleutian Islands. Olefin metathesis was utilized to determine the location of the double bond in the hydrocarbon chain. The absolute configuration was determined by using computational approaches combing with the ECD (electronic circular dichroism) spectroscopy.


Subject(s)
Alkaloids/isolation & purification , Porifera/chemistry , Pyrroloiminoquinones/isolation & purification , Alaska , Alkaloids/chemistry , Animals , Circular Dichroism , Molecular Structure , Pyrroloiminoquinones/chemistry , Stereoisomerism , Water
10.
Magn Reson Chem ; 48(1): 9-12, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19824003

ABSTRACT

The structural assignment of bispyrroloquinone and bispyrroloiminoquinone regioisomers was achieved using (13)C NMR spectral data. In the case of bispyrroloiminoquinones, the carbonyl group in the regioisomer possessing a nitrogen atom in both alpha-positions was systematically less deshielded than the carbonyl group in the other regioisomer. In the case of bispyrroloquinones, the most deshielded carbonyl group in the regioisomer with a nitrogen atom in both alpha-positions was more deshielded than the same carbonyl group in the other regioisomer.


Subject(s)
Pyrroloiminoquinones/chemistry , Carbon Isotopes , Magnetic Resonance Spectroscopy , Molecular Structure , Pyrroloiminoquinones/chemical synthesis , Stereoisomerism
11.
Org Lett ; 12(3): 436-9, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20039698

ABSTRACT

An approach to the synthesis of the tetrahydropyrroloiminoquinone alkaloids has been developed and applied to the preparation of N-1-beta-D-ribofuranosyltetrahydropyrroloiminoquinones. The strategy utilizes oxidative cyclization of aryl-methoxyamides by hypervalent iodine to construct the quinoline framework shared by members of this alkaloid family. The hypervalent iodine oxidant is generated in situ by anodic oxidation of iodobenzene.


Subject(s)
Alkaloids/chemistry , Alkaloids/chemical synthesis , Monosaccharides/chemical synthesis , Pyrroles/chemical synthesis , Pyrroloiminoquinones/chemical synthesis , Alkaloids/pharmacology , Animals , Catalysis , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Iodobenzenes/chemistry , KB Cells , Marine Biology , Mice , Molecular Structure , Monosaccharides/chemistry , Monosaccharides/pharmacology , Oxidation-Reduction , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroloiminoquinones/chemistry , Pyrroloiminoquinones/pharmacology , Stereoisomerism , Topoisomerase II Inhibitors
12.
Mini Rev Med Chem ; 9(1): 81-94, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19149662

ABSTRACT

In this review article we have reported a series of hybrid compounds characterized by the presence of a alpha-halogenocryloyl alkylating moiety of low chemical reactivity, linked to known antitumor agents or their active moieties. Among them, brostallicin (PNU-166196), was selected for clinical development and is now undergoing Phase II studies in patients with advanced or metastatic soft tissue sarcoma.


Subject(s)
Antineoplastic Agents, Alkylating/chemistry , Pyrroloiminoquinones/chemistry , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Distamycins/chemistry , Distamycins/pharmacology , Guanidines/chemistry , Guanidines/therapeutic use , Humans , Mice , Pyrroles/chemistry , Pyrroles/therapeutic use , Pyrroloiminoquinones/pharmacology
13.
Bioorg Med Chem ; 16(5): 2431-8, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18077173

ABSTRACT

Synthesis of 10 pyrroloiminoquinone derivatives is presented. The strategy is based around the elaboration of a common intermediate by reaction with primary amines. All the compounds obtained have been subjected to antiproliferative activity with three different cell lines (NCI-H460, HeLa, and HL-60). The capacity of 4 selected compounds to affect the enzymatic activity of the nuclear enzyme DNA topoisomerase II and to form the typical DNA fragmentation which occurs in the apoptotic process is discussed here.


Subject(s)
Pyrroloiminoquinones/chemical synthesis , Pyrroloiminoquinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/genetics , DNA Topoisomerases, Type II/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Pyrroloiminoquinones/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors
14.
Bioorg Med Chem ; 13(21): 6035-44, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16009557

ABSTRACT

A detailed analysis of four different collections of the sponge genus Zyzzya yielded nine pyrroloiminoquinones of the makaluvamine, batzelline, and isobatzelline/damirone classes. Dereplication analyses of additional Zyzzya extracts did not disclose more potent or additional new compounds. Comparative testing of these compounds in the National Cancer Institute's 60 cell line human tumor screen revealed varying levels of potency and differential cytotoxicity, apparently related to the unsaturation levels in and substitution patterns on the core ring system. Further studies on the topoisomerase II-mediated DNA cleavage were conducted. Reductive activation of the pyrroloiminoquinones led to DNA damage in vitro, which correlated with half wave potentials and reversibility parameters. DNA damage could be abrogated by ascorbate. Fluorescence displacement was used to measure intercalation with DNA; intercalation efficiency did not correlate with DNA-damaging proficiency. Makaluvamine H (5) emerged as the most potent and differential of our isolates, roughly comparable to makaluvamines C (in vitro) and I (in vivo). 3,7-Dimethyl guanine was isolated from one of the Zyzzya collections and from the sponge Latrunculia purpurea.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Porifera/chemistry , Pyrroloiminoquinones/chemistry , Pyrroloiminoquinones/pharmacology , Animals , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , DNA/chemistry , DNA/drug effects , DNA/metabolism , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Pyrroloiminoquinones/isolation & purification , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...